Selection and evaluation of surfactants for field pilots

Access full-text files




Dean, Robert Matthew

Journal Title

Journal ISSN

Volume Title



Chemical flooding has been studied for 50 years. However, never have the conditions encouraging its growth been as good as right now. Those conditions being new, improved technology and oil prices high enough to make implementation economical. The objective of this work was to develop economical, robust chemical formulations and processes that recover oil in field pilots when properly implemented. This experimental study goes through the process of testing surfactants to achieve optimal phase behavior, coreflooding with the best chemical formulations, improving the formulation and testing it in more corefloods, and then finally recommending the formulation to be tested in a field pilot. The target reservoir contains a light (34° API, 10 cP), non-reactive oil at about 22° C. The formation is a moderate permeability (50 - 300 mD) sandstone with a high clay content (up to 13%). Different surfactants and surfactant mixtures were tested with the oil including alkyl benzene sulfonates (ABS), Guerbet alcohol sulfates (GAS), alkyl propoxy sulfates, and internal olefin sulfonates (IOS). The best formulation contained 0.75% TDA -13PO-SO₄, 0.25% C₂₀₋₂₄ IOS, 0.75% isobutanol (IBA), 1% Na₂CO₃, all which are mixed in a softened fresh water from a supply well. Corefloods recovered 93% of residual oil from reservoir cores. Core flood experiments were also done with the alkali sodium carbonate to measure the effluent pH in a Bentheimer sandstone core with a cation exchange capacity (CEC) of 2 meq/100g. Floods at frontal velocities of 100, 10, and 0.33 ft/D were performed with 0.3 pore volume slugs of 0.7% Na₂CO₃ at 86° C. The effluent was analyzed for ions and pH breakthrough. It was found that the pH breakthrough occurred before surfactant breakthrough would be expected as desired although the pH was lower at a frontal velocity of 0.33 ft/D than at the higher velocities. The Na₂CO₃ consumption was 0.244, 0.238, and 0.207 meq/100 g rock at velocities of 100, 10, and 0.33 ft/D, respectively. In addition, a no-alkaline formulation consisting of a new large hydrophobe ether carboxylate surfactant mixed with an internal olefin sulfonate was tested on an active oil and it successfully recovered 99% of the waterflood remaining oil from an Ottawa sand pack with no salinity gradient and no alkali. The final residual oil saturation after the chemical flood (S[subscript orc]) was only 0.005



LCSH Subject Headings