Additive Fabrication of 3D Structures by Holographic Lithography
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
As additive manufacturing (AM) technologies advance and mature, the geometric constraints imposed by fabricating 2D planar layers become increasingly important to overcome. In the realm of light-driven AM fabrication, holography provides a promising avenue toward true 3D structures. Being capable of recording and reconstructing 3D information, holographic shaping of the light field can enable direct 3D fabrication in photopolymer resins. We have conceptualized, designed, and built a prototype holographic additive micromanufacturing system, incorporating a liquid-crystal-on-silicon (LCoS) spatial light modulator (SLM) to redirect light energy at the build volume by spatial control of the phase distribution. Here we report the system design, design parameter trade-offs relevant for producing 3D structures, and initial fabrication results.