Laser Heated Electron Beam Gun Optimization to Improve Additive Manufacturing
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Electron Beam Additive Manufacturing requires to improve electron gun characteristics to become a highly competitive manufacturing process. Our work targets the optimization of beam focusing to reduce the beam spot size, to improve the beam deflection system resulting in higher positioning accuracy, to refine thermal stability by minimizing heat induced drifting and to introduce a new powder delivery device which can be synchronized to beam parameters. Heisenberg's uncertainty principle states that if a position of a particle is precisely known, its momentum becomes less accurate and vice versa. Therefore, it will be required to conceive gun parameters optimizing the balance of opposing laws. Our goal is to deliver an open platform electron beam additive manufacturing machine which utilizes the results presented in this paper.