Grounded language learning models for ambiguous supervision

dc.contributor.advisorMooney, Raymond J. (Raymond Joseph)
dc.creatorKim, Joo Hyun, active 2013en
dc.date.accessioned2014-01-30T17:30:18Zen
dc.date.issued2013-12en
dc.date.submittedDecember 2013en
dc.date.updated2014-01-30T17:30:18Zen
dc.descriptiontexten
dc.description.abstractCommunicating with natural language interfaces is a long-standing, ultimate goal for artificial intelligence (AI) agents to pursue, eventually. One core issue toward this goal is "grounded" language learning, a process of learning the semantics of natural language with respect to relevant perceptual inputs. In order to ground the meanings of language in a real world situation, computational systems are trained with data in the form of natural language sentences paired with relevant but ambiguous perceptual contexts. With such ambiguous supervision, it is required to resolve the ambiguity between a natural language (NL) sentence and a corresponding set of possible logical meaning representations (MR). In this thesis, we focus on devising effective models for simultaneously disambiguating such supervision and learning the underlying semantics of language to map NL sentences into proper logical MRs. We present probabilistic generative models for learning such correspondences along with a reranking model to improve the performance further. First, we present a probabilistic generative model that learns the mappings from NL sentences into logical forms where the true meaning of each NL sentence is one of a handful of candidate logical MRs. It simultaneously disambiguates the meaning of each sentence in the training data and learns to probabilistically map an NL sentence to its corresponding MR form depicted in a single tree structure. We perform evaluations on the RoboCup sportscasting corpus, proving that our model is more effective than those proposed by previous researchers. Next, we describe two PCFG induction models for grounded language learning that extend the previous grounded language learning model of Börschinger, Jones, and Johnson (2011). Börschinger et al.’s approach works well in situations of limited ambiguity, such as in the sportscasting task. However, it does not scale well to highly ambiguous situations when there are large sets of potential meaning possibilities for each sentence, such as in the navigation instruction following task first studied by Chen and Mooney (2011). The two models we present overcome such limitations by employing a learned semantic lexicon as a basic correspondence unit between NL and MR for PCFG rule generation. Finally, we present a method of adapting discriminative reranking to grounded language learning in order to improve the performance of our proposed generative models. Although such generative models are easy to implement and are intuitive, it is not always the case that generative models perform best, since they are maximizing the joint probability of data and model, rather than directly maximizing conditional probability. Because we do not have gold-standard references for training a secondary conditional reranker, we incorporate weak supervision of evaluations against the perceptual world during the process of improving model performance. All these approaches are evaluated on the two publicly available domains that have been actively used in many other grounded language learning studies. Our methods demonstrate consistently improved performance over those of previous studies in the domains with different languages; this proves that our methods are language-independent and can be generally applied to other grounded learning problems as well. Further possible applications of the presented approaches include summarized machine translation tasks and learning from real perception data assisted by computer vision and robotics.en
dc.description.departmentComputer Science
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttp://hdl.handle.net/2152/22986en
dc.language.isoen_USen
dc.subjectGrounded language learningen
dc.subjectSemantic parsingen
dc.subjectLearning from ambiguous supervisionen
dc.subjectProbabilistic alignmenten
dc.subjectNatural language processingen
dc.titleGrounded language learning models for ambiguous supervisionen
thesis.degree.departmentComputer Sciencesen
thesis.degree.disciplineComputer Scienceen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
KIM-DISSERTATION-2013.pdf
Size:
3.08 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
LICENSE_1.txt
Size:
1.84 KB
Format:
Plain Text
Description:
No Thumbnail Available
Name:
LICENSE.txt
Size:
1.84 KB
Format:
Plain Text
Description: