Noise shaping Asynchronous SAR ADC based time to digital converter
Access full-text files
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Time-to-digital converters (TDCs) are key elements for the digitization of timing information in modern mixed-signal circuits such as digital PLLs, DLLs, ADCs, and on-chip jitter-monitoring circuits. Especially, high-resolution TDCs are increasingly employed in on-chip timing tests, such as jitter and clock skew measurements, as advanced fabrication technologies allow fine on-chip time resolutions. Its main purpose is to quantize the time interval of a pulse signal or the time interval between the rising edges of two clock signals. Similarly to ADCs, the performance of TDCs are also primarily characterized by Resolution, Sampling Rate, FOM, SNDR, Dynamic Range and DNL/INL. This work proposes and demonstrates 2nd order noise shaping Asynchronous SAR ADC based TDC architecture with highest resolution of 0.25 ps among current state of art designs with respect to post-layout simulation results. This circuit is a combination of low power/High Resolution 2nd Order Noise Shaped Asynchronous SAR ADC backend with simple Time to Amplitude converter (TAC) front-end and is implemented in 40nm CMOS technology. Additionally, special emphasis is given on the discussion on various current state of art TDC architectures.