Feasibility of isotropic inversion in orthorhombic media : the Barrett unconventional model

Yanke, Andrew James
Journal Title
Journal ISSN
Volume Title

Geophysicists often relegate shale reservoirs as having higher symmetries (e.g., transversely isotropic (TI) or isotropic) than what reality demonstrates. Routine application of TI (or even isotropic) algorithms to orthorhombic media neglects the associated errors because we never know the true model in practice. This thesis evaluates the viability of isotropic post-stack and pre-stack seismic inversion to orthorhombic media using the SEAM Barrett Unconventional Model, the most realistic depositional model to date. The Barrett Model contains buried topography, simulated stratigraphy, and designated reservoir zones with orthorhombic anisotropy. I inverted the Barrett data volume for isotropic elastic property cubes, which I compared to the model volume in each symmetry-plane of an orthorhombic medium.

If the stacked seismic data contained only the near offsets, post-stack inversion resolved acoustic impedances that closely matched the true model both within and outside of the reservoir zones at all well locations. Anisotropy most affected the far offsets, so muting them predictably enhanced the post-stack inversion. I maintained all offsets for pre-stack inversion, but a parabolic radon filter eliminated nonhyperbolic behavior (rather than nonhyperbolic moveout analysis) at far offsets. The pre-stack impedance attributes adequately described the vertical heterogeneity of the true model at a cross-validation well, but the inverted values increasingly relied on the initial model with depth. The inverted density estimates experienced notable oscillations relative to the initial model, particularly where steep contrasts in elastic properties occurred. Mismatch of the inverted elastic properties at the well locations can be attributed to noise, thin layering effects, band limitation, steep contrasts in elastic properties, AVO behavior stacked into the data, an inaccurate starting model, and the effects of anisotropy. The most significant sources of error include small-scale reflectivity and comprehensive filtering of nonhyperbolic phenomena.

Away from the well locations, the isotropic inversion gave no visual indication of reservoir geobodies, but it sufficiently described the elastic property variations near reservoir mid-sections. Moreover, I showed that the inverted elastic properties differ from their orthorhombic models by no more than 35%. The greatest misfits occurred near reservoir contacts and geobody locations. The computed impedance models in each symmetry-plane have distinctive differences, but isotropic inversion dismisses these variations entirely. I conclude that isotropic inversion should not be a surrogate for orthorhombic methods in data preconditioning and quantitative reservoir characterization.