Phonon-assisted inter-valley scattering determines ultrafast exciton dynamics in MoSe2 bilayers

dc.creatorHelmrich, Sophia
dc.creatorSampson, Kevin
dc.creatorHuang, Di
dc.creatorSelig, Malte
dc.creatorHao, Kai
dc.creatorTran, Kha
dc.creatorAchstein, Alexander
dc.creatorYoung, Carter
dc.creatorKnorr, Andreas
dc.creatorMalic, Ermin
dc.creatorWoggon, Ulrike
dc.creatorOwschimikow, Nina
dc.creatorLi, Xiaoqin
dc.date.accessioned2024-02-01T17:23:05Z
dc.date.available2024-02-01T17:23:05Z
dc.date.issued2022-09-19
dc.description.abstractWhile valleys (energy extrema) are present in all band structures of solids, their preeminent role in determining exciton resonances and dynamics in atomically thin transition metal dichalcogenides (TMDC) is unique. Using two-dimensional coherent electronic spectroscopy, we find that exciton decoherence occurs on a much faster time scale in MoSe2 bilayers than that in the monolayers. We further identify two population relaxation channels in the bilayer, a coherent and an incoherent one. Our microscopic model reveals that phonon-emission processes facilitate scattering events from the K valley to other lower energy Γ and Λ valleys in the bilayer. Our combined experimental and theoretical studies unequivocally establish different microscopic mechanisms that determine exciton quantum dynamics in TMDC monolayers and bilayers. Understanding exciton quantum dynamics provides critical guidance to manipulation of spin/valley degrees of freedom in TMDC bilayers.
dc.description.departmentCenter for Dynamics and Control of Materials
dc.identifier.doihttps://doi.org/10.48550/arXiv.2209.08707
dc.identifier.urihttps://hdl.handle.net/2152/123545
dc.identifier.urihttps://doi.org/10.26153/tsw/50341
dc.language.isoen_US
dc.relation.ispartofCenter for Dynamics and Control of Materials Publications
dc.rights.restrictionOpen
dc.subjectMoSe2
dc.titlePhonon-assisted inter-valley scattering determines ultrafast exciton dynamics in MoSe2 bilayers
dc.typeArticle

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2209.08707.pdf
Size:
2.39 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.64 KB
Format:
Item-specific license agreed upon to submission
Description: