Estimation with stable disturbances

Date

2014-05

Authors

Ghaffari, Novin

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The family of stable distributions represents an important generalization of the Gaussian family; stable random variables obey a generalized central limit theorem where the assumption of finite variance is replaced with one of power law decay in the tails. Possessing heavy tails, asymmetry, and infinite variance, non-Gaussian stable distributions can be suitable for inference in settings featuring impulsive, possibly skewed noise. A general lack of analytical form for the densities and distributions of stable laws has prompted research into computational methods of estimation. This report introduces stable distributions through a discussion of their basic properties and definitions in chapter 1. Chapter 2 surveys applications, and chapter 3 discusses a number of procedures for inference, with particular attention to time series models in the ARMA setting. Further details and an application can be found in the appendices.

Department

Description

text

LCSH Subject Headings

Citation