Emerging biotechnology to detect weak and/or transient protein-protein interactions

Date
2009-12
Authors
Thibodeaux, Gabrielle Nina
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Protein-protein interactions are of great importance to a number of essential biological processes including cell cycle regulation, cell-cell interactions, DNA replication, transcription and translation. Thus, an understanding of protein-protein interactions is critical for understanding many facets of cell function. Unfortunately, the tools and methods currently in use to identify and study protein-protein interactions focus largely on high affinity, stable interactions. However, the majority of the protein-protein interactions involved in regulatory processes have weak affinities and are transient in nature. Therefore, it is important to develop new biotechnology capable of detecting weak and/or transient protein-protein interactions in vivo. Here, we describe four new methods that allow for the identification and study of weak and/or transient protein-protein interactions in vivo. First, we developed a rapid method to convert Escherichia coli orthogonal tRNA/synthetase pairs into an orthogonal system for mammalian cells in order to site-specifically incorporate unnatural amino acids into any gene of interest using stop codon suppression. This method will allow the expression and purification of proteins that carry normally transient post-translational modifications. Second, we successfully employed site-specific unnatural amino acid incorporation to chemically cross-link a known homodimer, Sortase A, in vivo. Third, we developed a novel tetracycline repressor-based mammalian two-hybrid system and successfully detected homo- and hetero-dimers that are known to have weak binding constants. Finally, a synthetic antibody (termed a synbody) that binds weakly to the SH3 domain of the proto-oncogene Abelson tyrosine kinase was developed. The synbody can potentially be used as a first generation drug and/or biomarker. We hope that the methods developed in this dissertation will enable the scientific community to better understand weak/transient protein-protein interactions in vivo.

Description
text
Citation