Lightly crosslinked poly(ethylene glycol)-tethered, pH-responsive biomaterials

dc.contributor.advisorPeppas, Nicholas A., 1948-en
dc.contributor.advisorMcGinty, James W.en
dc.creatorThomas, Joshua Brocken
dc.date.accessioned2008-08-28T23:17:33Zen
dc.date.available2008-08-28T23:17:33Zen
dc.date.issued2006en
dc.description.abstractSignificant effort has been spent on altering the pharmacokinetic profile of drugs and identifying ways to slow down the GI transit of the therapeutic, especially that of the small intestine, the location where the majority of absorption occurs. The two main areas of thrust for research pertaining to increasing the bioavailability of drugs possessing narrow absorption windows are retaining the dosage form in the stomach (gastroretentive) and slowing down transit time in the small intestine (mucoadhesive). Gastroretentive dosage forms maintain the drug delivery system above the absorption window and release the drug accordingly. Mucoadhesion affords the ability to slow upper GI transit by maintaining the dosage form at the site of absorption through some type of interaction with the intestinal mucosa. The motility of the gastrointestinal tract plays a major role in appropriately engineering a dosage form. The delivery system must be designed so that it works with the digestive system to accomplish the goal of targeting the area where the narrow absorption window of the therapeutic exists and controlling the release to enhance the pharmacokinetic profile. Smart biomaterials composed of pH responsive polymers, poly((meth)acrylic acid), were synthesized using a precipitation polymerization technique. The microparticles were grafted with linear polymer chains (PEG) that are capable of complexing with the hydroxyl groups of the polyacid and interpenetrating into the mucus gel layer upon entry into the small intestine. Upon introduction of an alkaline solution, these materials imbibe a significant amount of water and create a highly viscous solution. The gelled materials serve as both a controlled release membrane and resist the inertial forces associated with motility, thereby effectively slowing down the transit of the dosage form. The amount and length of the linear chain were varied to investigate their effects on the release behavior of a model compound.
dc.description.departmentChemical Engineeringen
dc.format.mediumelectronicen
dc.identifierb68639223en
dc.identifier.oclc166268162en
dc.identifier.urihttp://hdl.handle.net/2152/2940en
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subject.lcshDrugs--Controlled releaseen
dc.subject.lcshPolymeric drug delivery systemsen
dc.subject.lcshPolymeric drugsen
dc.titleLightly crosslinked poly(ethylene glycol)-tethered, pH-responsive biomaterialsen
dc.type.genreThesisen
thesis.degree.departmentChemical Engineeringen
thesis.degree.disciplineChemical Engineeringen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
thomasj35914.pdf
Size:
8.13 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.65 KB
Format:
Plain Text
Description: