ADAPTING A DESIGN FOR ADDITIVE MANUFACTURING WORKFLOW TO ACCOUNT FOR CONTINUOUS CARBON FIBER REINFORCED PARTS

Access full-text files

Date

2023

Authors

Adams, Gavin
Meisel, Nicholas

Journal Title

Journal ISSN

Volume Title

Publisher

University of Texas at Austin

Abstract

The use of continuous carbon fiber (CCF) reinforcement in material extrusion 3D printing has the potential to revolutionize the material extrusion field of additive manufacturing. Notably, the Markforged X7 system utilizes this CCF reinforcement with the aim to produce parts with mechanical results rivaling or surpassing those of aluminum. However, due to certain constraints with the deposition of CCF in material extrusion parts, such as an inability for CCF to be deposited throughout layers in the Z-direction, traditional design for additive manufacturing (DfAM) techniques need to be reevaluated. This paper will explore (1) how existing DfAM considerations (e.g., topology optimization, functional integration, minimum feature size, etc.) can be tailored to CCF and (2) how an existing DfAM workflow can be adapted to account for manufacturing limitations specific to the deposition of CCF. The research is demonstrated through a hoist sling case study, which highlights the importance of considering fiber orientation and routing in the design stage to ensure accurate CCF reinforcement and achieve ideal mechanical results relative to the loads associated with the part. The result is an initial, potentially valuable workflow for designing CCF parts to be created using AM.

Description

LCSH Subject Headings

Citation