Loss compensation in a plasmonic nanoparticle array

Access full-text files




Miller, Shannon Marie

Journal Title

Journal ISSN

Volume Title



The problem of heavy material and radiative losses in plasmonic devices has held back their implementation for compact and high-speed data storage and interconnects. One of the most interesting solutions to this problem currently under exploration is the addition of a gain material in close proximity to the metallic nanostructures for loss compensation. Here the physics of light transport in a nanoparticle array, and the operation of gain media in contact with the structure, are described and analytically modeled. A two-dimensional array of closely spaced gold nanoparticles has been fabricated by focused ion beam milling, and its electromagnetic response in the presence or absence of a dye coating has been simulated in preparation for pump-probe optical testing. The compensation of losses via a fluorophore coating has been proven for the first time in this geometry, for a physically realized sample.



LCSH Subject Headings