Emissions of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate from latex paint

dc.contributor.advisorCorsi, Richard L.en
dc.creatorLin, Chi-Chien
dc.date.accessioned2008-08-28T23:10:13Zen
dc.date.available2008-08-28T23:10:13Zen
dc.date.issued2006en
dc.description.abstractLatex paints constitute over 70% of interior architectural coatings in the United States. This dissertation is focused on one component of latex paint, 2,2,4-trimethyl-1,3-pentadediol monoisobutyrate (TMPD-MIB). Four substrates (gypsum board, plywood, concrete-A and aluminum) and two simplified latex paints (high and low pigment volume concentrations- HPVC and LPVC) containing TMPD-MIB, but no glycols, were employed. Commercial Nippon paints (flat, semi-gloss, and gloss) containing TMPD-MIB and propylene glycol were also tested for concrete-B and gypsum board specimens. Short- and long-term emissions of TMPD-MIB following paint applications were studied. Emissions were observed for periods as long as 16 months, but were relatively low after 150 hours. For similar times after paint application, the mass recoveries for TMPD-MIB in air for porous materials, such as gypsum board and concrete, were significantly lower than aluminum specimens. Recovery of TMPD-MIB in air for HPVC paint was generally greater than that for LPVC paint, likely due to enhanced diffusion through the more porous HPVC paint film. For gypsum board, the relative distribution of TMPD-MIB mass between air and substrate components was also determined. The contribution of TMPD-MIB emissions from the wet film was generally small relative to the integrated long-term emissions from the dry film. TMPD-MIB was recovered in the dried paint film and gypsum board with 96 ± 6% mass closure. Gypsum board appears to serve as a long-term reservoir of TMPD-MIB, which diffuses into the body of the gypsum board and adsorbs to calcium sulfate. A mass balance model was developed to predict room-scale TMPD-MIB concentration based on small-scale chamber results. Reasonable increases in room or building air exchange rate can reduce TMPD-MIB concentrations to below airway irritation and odor threshold concentrations. The scope of research described in this dissertation goes beyond previous studies to quantify chemical-specific emissions from paint. Findings related to the long-term distribution of TMPD-MIB mass on gypsum board are particularly novel and significant. The results presented herein should facilitate future research related to emissions from paint.
dc.description.departmentCivil, Architectural, and Environmental Engineeringen
dc.format.mediumelectronicen
dc.identifierb66060990en
dc.identifier.oclc163898852en
dc.identifier.urihttp://hdl.handle.net/2152/2813en
dc.language.isoengen
dc.rightsCopyright is held by the author. Presentation of this material on the Libraries' web site by University Libraries, The University of Texas at Austin was made possible under a limited license grant from the author who has retained all copyrights in the works.en
dc.subject.lcshPaint--Analysisen
dc.titleEmissions of 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate from latex painten
dc.type.genreThesisen
thesis.degree.departmentCivil, Architectural, and Environmental Engineeringen
thesis.degree.disciplineCivil Engineeringen
thesis.degree.grantorThe University of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen

Access full-text files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
linc90075.pdf
Size:
1.41 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.65 KB
Format:
Plain Text
Description: