Methods to achieve wavelength selectivity in infrared microbolometers and reduced thermal mass microbolometers

Jung, Joo-Yun, 1976-
Journal Title
Journal ISSN
Volume Title

The use of a patterned resistive sheet as an infrared-selective absorber, including the effects of a mechanical support dielectric layer is discussed. Also, modified dielectric coated Salisbury Screen can improve both the wavelength selectivity and the speed of thermal response for microbolometers. These patterned resistive sheets and Modified dielectric coated Salisbury Screen are a modified form of classical Salisbury Screens that utilize a resistive absorber layer placed a quarter-wavelength in front of a mirror. These structures can show a narrower detection bandwidth when compared to conventional microbolometers. For a Modified dielectric coated Salisbury Screen for multi-spectral system, wavelength selectivity can be varied by changing the distance to the mirror, and for patterned resistive sheet, wavelength selectivity can be varied by changing the lithographically drawn parameters of the array. Hence, different pixels in a focal plane array can be designed to produce a “multi-color” infrared imaging system. Also, the thermal mass of microbolometer is reduced using patterned resistive structure.