MDEA : malware detection with evolutionary adversarial learning

Access full-text files

Date

2019-12

Authors

Wang, Xiruo

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Many applications have used machine learning as a tool to detect malware. These applications take in raw or processed binary data to feed neural network models to classify benign or malicious files. Even though this approach has proved effective against dynamic changes, such as encrypting, obfuscating and packing techniques, it is vulnerable to specific evasion attacks to where that small changes to the input data cause misclassification at test time. In this paper, I propose MDEA, an Adversarial Malware Detection model that combines a neural network and evolutionary optimization attack samples to make the network robust against evasion attacks. By retraining the model with the evolved malware samples, network performance improves a big margin.

Description

LCSH Subject Headings

Citation