Effects of Inter-Layer Time Interval on Temperature Gradients in Direct Laser Deposited Ti-6Al-4V

Access full-text files

Date

2016

Authors

Masoomi, Mohammad
Thompson, Scott M.
Shamsaei, Nima
Bian, Linkan

Journal Title

Journal ISSN

Volume Title

Publisher

University of Texas at Austin

Abstract

Parts fabricated via additive manufacturing (AM) methods are prone to experiencing high temperature gradients during manufacture resulting in internal residual stress formation. In the current study, a numerical model for predicting the temperature distribution and residual stress in Directed Energy Deposited (DED) Ti–6Al–4V parts is utilized for determining a relationship between local part temperature gradients with generated residual stress. Effects of time-interval between successive layer deposits, as well as layer deposition itself, on the temperature gradient vector for the first and each layer is investigated. The numerical model is validated using thermographic measurements of Ti-6Al-4V specimens fabricated via Laser Engineered Net Shaping® (LENS), a blown-powder/laser-based DED method. Results demonstrate the heterogeneity in the part’s spatiotemporal temperature field, and support the fact that as the part number, or single part size or geometry, vary, the resultant residual stress due to temperature gradients will be impacted. As the time inter-layer time interval increases from 0 to 10 second, the temperature gradient magnitude in vicinity of the melt pool will increase slightly.

Description

LCSH Subject Headings

Citation