Exciton behaviour at organic solar cell interfaces

Date
2015-12
Authors
Dinica, Olivia
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract

Organic photovoltaics (OPVs) have emerged as a promising class of materials in the production of flexible and cheap solar cells. Polymer OPVs are typically composed of a blend of a semiconducting electron donating poly- mer with an electron accepting fullerene derivative. This blend leads to a high donor-acceptor interfacial surface area where excitons are split apart to create free charges. The generation of free charges after photo-excitation is a main factor influencing solar cell efficiency. However, the mechanisms of charge transfer and the competing process of charge recombination at the interface are not completely clear. The understanding of these processes is essential for the rational design of materials that can maximize photovoltaic conversion efficiencies. The focus of this dissertation is on the influence that electric fields and chemical structure have on exciton dissociation and recombination at the interface of donor-acceptor materials. In particular, we use mixed quantum/classical dynamical simulations and electronic structure calculations to investigate several oligomer-fullerene systems. In order to study the potential energy surfaces guiding the dynamics of electron transfer, the nuclear and electron dynamics of large systems need to be simulated. To make these calculations computationally feasible, a mixed quantum classical molecular dynamics (MQCMD) approach was taken. This technique is based on the QCFF/PI formalism first described by Warshel and Karplus and was further developed by Lobaugh and Rossky for the simulation of betaine-30. This approach divides the conjugated system into a classical and a quantum subsystem. The quantum treatment is reserved for the π electronic system described by the Pariser-Parr-Pople (PPP) Hamiltonian. The classical potential describes a fully flexible molecular backbone and is modeled using an empirical molecular mechanics force field. In the first part of the dissertation we are examining the effect of an external electric field on charge transfer pathways and rates at sexithiophene/fullerene interfaces. In the second part, we develop a rigorous parametrization technique that allows us to model push-pull polymers. These polymers include PCDTBT and KP115 which have a more complex molecular structure than homo-polymers like the one considered in the first part. We use the QCFF/PI method as well as electronic structure calculations to investigate the influence of molecular structure and donor-acceptor orientation on charge transfer and recombination. The pathways linking exciton formation, charge transfer and thermal relaxation are explored, particularly in the context of dependence in the morphology of the donor molecules as well as the non-adiabatic coupling between excited states.

Department
Description
Citation