TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The early life history and reproductive biology of Cymothoa excisa, a marine isopod parasitizing Atlantic croaker, (Micropogonias undulatus), along the Texas coast

    Thumbnail
    View/Open
    COOK-THESIS.pdf (850.5Kb)
    Date
    2012-08
    Author
    Cook, Colt William
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Parasite population dynamics and the evolution of life history characteristics are strongly correlated with the processes of host infection, survival within a host and reproduction, with each process posing a challenge to the parasitic lifestyle. Macroparasites living in marine environments have evolved extreme changes in physiology, morphology and life history traits to overcome these challenges. This study focused on the infective and reproductive stage of the parasitic isopod, Cymothoa excisa, a common parasite on Atlantic croaker, (Micropogonias undulatus), along the Texas coast. A two year survey identified infection rates and the relationship between fish density and size and parasite load, size and fecundity. Isopod morphology was quantified for each life stage, identifying shape transitions through ontogeny and sex change. Sex change in C. excisa was found to be driven by the absence of conspecific parasites within a host, where sex change only occurred in the first individual to arrive. To understand the infective stage of C. excisa parasite energetics and host detection mechanisms were tested. Parasites with free-living life stages have a narrow window to infect a host and have evolved a number of mechanisms to detect and locate a host. I used a series of energetic experiments to determine an infection window for free-swimming larvae (mancae) and behavioral response experiments testing both visual and chemical cues associated with host detection. Mancae were found to have a narrow infection window, where mancae began searching for a host as soon as they are born, but quickly switch to an ambush strategy to conserve energy. Mancae were also found to be responsive to both visual and chemical cues from its common fish host, as well as a non-host fish, indicating that chemical cues are used in host detection, but chemical specificity is not a mechanism that C. excisa uses to find its common host. The results from this study have implications to parasitic species and their hosts, as well as to other areas of study, including population and ecosystem dynamics.
    Department
    Marine Science
    Description
    text
    Subject
    Parasite
    Host-detection
    Morphology
    Sex change
    URI
    http://hdl.handle.net/2152/ETD-UT-2012-08-6285
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin