TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Freshwater inflows in the Nueces Delta, TX : impacts on porewater salinity and estimation of needs

    Thumbnail
    View/Open
    STACHELEK-THESIS.pdf (2.196Mb)
    Date
    2012-05
    Author
    Stachelek, Joseph Jeremy
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Estuarine wetlands and salt marshes are fundamentally driven by variations in freshwater inflow. In semi-arid salt marshes, such as the Nueces River Delta, TX, the stochastic nature of freshwater inflow events exposes resident organisms to a wide range of environmental conditions. In this study, we investigate (1) the relative importance of environmental variables on porewater salinity and (2) determination of freshwater inflow needs based on the response of emergent plants to salinity variations. Porewater salinity variations were tracked on a continuous basis with deployed conductivity sensors and on a synoptic basis with soil water extracts. We found that spatial patterns of porewater salinity were characterized by a high degree of variability in creekbank areas (23.8 ± 7.68) relative to interior marsh areas (44.2 ± 3.4). Our observations were used to test a simple model capable of predicting porewater salinities based on environmental variables. Both empirical measurements and model simulations indicated that semiannual tides play a critical role in controlling porewater flushing from precipitation and freshwater inflow events. Estimation of freshwater inflow needs for the Nueces Delta proceeded in two steps. First, we examined the response of three common emergent plants species (Borrichia frutescens, Spartina alterniflora, and Salicornia virginica) to variations in salinity. The abundance of one species in particular (S. alterniflora) was tightly coupled to salinity variations whereby salinities exceeding 25 ± 5 resulted in dramatic declines in coverage. Next, the relationship between freshwater inflow and porewater salinity was examined with respect to the salinity “tolerance” of S. alterniflora. Estimated inflow needs based on maintenance of substantial (> 20%) S. alterniflora coverage was comparable to both previous inflow needs estimates and mean annual inflows observed over the course of the study. The results of this study suggest that S. alterniflora abundance provides a reliable indicator of overall estuarine hydrological condition in the Nueces Delta.
    Department
    Marine Science
    Description
    text
    Subject
    Soil salinity
    Salt marsh
    Subsurface hydrology
    Gulf coast
    Zonation
    URI
    http://hdl.handle.net/2152/ETD-UT-2012-05-5549
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin