TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Structural controls on evaporite paleokarst development : Mississippian Madison Formation, Bighorn Canyon Recreation Area, Wyoming and Montana

    Thumbnail
    View/Open
    ELDAM-THESIS.pdf (45.47Mb)
    Date
    2012-05
    Author
    Eldam, Nabiel S.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    This study provides new insights on the mechanisms that controlled the development of solution-enhanced fractures and suprastratal deformation associated with the Mississippian Madison Sequence IV evaporite paleokarst complex. Based on detailed field mapping utilizing LiDAR, GPS, and field observations, we document a paleostructural high (oriented 145º) associated with the Ancestral Rockies uplift within the study area. One hundred twenty-one sediment-filled, solution-enhanced fractures within the Seq. IV cave roof were mapped and characterized by their dominant fill type (Amsden or Madison) and vertical extent. Spatial analysis reveals minimum spacing of these features occurs in areas uplifted during the Late Paleozoic suggesting a link between paleostructural position and solution feature spacing. Shape analysis of these solution features also supports structural position during the Late Paleozoic acted as a dominant control on fracture morphology: (1) downward tapering and fully penetrative features concentrate in areas that experienced uplift; (2) upward tapering concentrate in areas that were undeformed. Mapping of Seq. IV cave roof strata demonstrates vertical collapse variability exceeds 22 m and fault intensity increases in areas of increased collapse. These findings have significant implications for prediction and characterization of solution-enhanced fractures and suprastratal deformation within evaporite paleokarst systems.
    Department
    Geological Sciences
    Description
    text
    Subject
    Evaporite paleokarst
    Fractures
    Bighorn Basin
    Karst
    Mississippian
    Madison
    Tectonics
    Amsden
    Horseshoe shale member
    Ranchester member
    Lidar
    Stratigraphic modeling
    URI
    http://hdl.handle.net/2152/ETD-UT-2012-05-5134
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin