TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pretzel knots of length three with unknotting number one

    Thumbnail
    View/Open
    STARON-DISSERTATION.pdf (613.3Kb)
    Date
    2012-05
    Author
    Staron, Eric Joseph
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    This thesis provides a partial classification of all 3-stranded pretzel knots K=P(p,q,r) with unknotting number one. Scharlemann-Thompson, and independently Kobayashi, have completely classified those knots with unknotting number one when p, q, and r are all odd. In the case where p=2m, we use the signature obstruction to greatly limit the number of 3-stranded pretzel knots which may have unknotting number one. In Chapter 3 we use Greene's strengthening of Donaldson's Diagonalization theorem to determine precisely which pretzel knots of the form P(2m,k,-k-2) have unknotting number one, where m is an integer, m>0, and k>0, k odd. In Chapter 4 we use Donaldson's Diagonalization theorem as well as an unknotting obstruction due to Ozsv\'ath and Szab\'o to partially classify which pretzel knots P(2,k,-k) have unknotting number one, where k>0, odd. The Ozsv\'ath-Szab\'o obstruction is a consequence of Heegaard Floer homology. Finally in Chapter 5 we explain why the techniques used in this paper cannot be used on the remaining cases.
    Department
    Mathematics
    Description
    text
    Subject
    Topology
    Knot theory
    Unknotting number
    Heegaard Floer homology
    URI
    http://hdl.handle.net/2152/ETD-UT-2012-05-5055
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin