TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Information theoretic methods in distributed compression and visual quality assessment

    Thumbnail
    View/Open
    SOUNDARARAJAN-DISSERTATION.pdf (1.097Mb)
    Date
    2012-05
    Author
    Soundararajan, Rajiv
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Distributed compression and quality assessment (QA) are essential ingredients in the design and analysis of networked signal processing systems with voluminous data. Distributed source coding techniques enable the efficient utilization of available resources and are extremely important in a multitude of data intensive applications including image and video. The quality analysis of such systems is also equally important in providing benchmarks on performance leading to improved design and control. This dissertation approaches the complementary problems of distributed compression and quality assessment using information theoretic methods. While such an approach provides intuition on designing practical coding schemes for distributed compression, it directly yields image and video QA algorithms with excellent performance that can be employed in practice. This dissertation considers the information theoretic study of sophisticated problems in distributed compression including, multiterminal multiple description coding, multiterminal source coding through relays and joint source channel coding of correlated sources over wireless channels. Random and/or structured codes are developed and shown to be optimal or near optimal through novel bounds on performance. While lattices play an important role in designing near optimal codes for multiterminal source coding through relays and joint source channel coding over multiple access channels, time sharing random Gaussian codebooks is optimal for a wide range of system parameters in the multiterminal multiple description coding problem. The dissertation also addresses the challenging problem of reduced reference image and video QA. A family of novel reduced reference image and video QA algorithms are developed based on spatial and temporal entropic differences. While the QA algorithms for still images only compute spatial entropic differences, the video QA algorithms compute both spatial and temporal entropic differences and combine them in a perceptually relevant manner. These algorithms attain excellent performances in terms of correlation with human judgments of quality on large QA databases. The framework developed also enables the study of the degradation in performance of QA algorithms from full reference information to almost no information from the reference image or video.
    Department
    Electrical and Computer Engineering
    Description
    text
    Subject
    Information theory
    Image and video processing
    Distributed compression
    Quality assessment
    URI
    http://hdl.handle.net/2152/ETD-UT-2012-05-5022
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin