TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Modeling turbulence using optimal large eddy simulation

    Thumbnail
    View/Open
    CHANG-DISSERTATION.pdf (849.8Kb)
    Date
    2012-05
    Author
    Chang, Henry, 1976-
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Most flows in nature and engineering are turbulent, and many are wall-bounded. Further, in turbulent flows, the turbulence generally has a large impact on the behavior of the flow. It is therefore important to be able to predict the effects of turbulence in such flows. The Navier-Stokes equations are known to be an excellent model of the turbulence phenomenon. In simple geometries and low Reynolds numbers, very accurate numerical solutions of the Navier-Stokes equations (direct numerical simulation, or DNS) have been used to study the details of turbulent flows. However, DNS of high Reynolds number turbulent flows in complex geometries is impractical because of the escalation of computational cost with Reynolds number, due to the increasing range of spatial and temporal scales. In Large Eddy Simulation (LES), only the large-scale turbulence is simulated, while the effects of the small scales are modeled (subgrid models). LES therefore reduces computational expense, allowing flows of higher Reynolds number and more complexity to be simulated. However, this is at the cost of the subgrid modeling problem. The goal of the current research is then to develop new subgrid models consistent with the statistical properties of turbulence. The modeling approach pursued here is that of "Optimal LES". Optimal LES is a framework for constructing models with minimum error relative to an ideal LES model. The multi-point statistics used as input to the optimal LES procedure can be gathered from DNS of the same flow. However, for an optimal LES to be truly predictive, we must free ourselves from dependence on existing DNS data. We have done this by obtaining the required statistics from theoretical models which we have developed. We derived a theoretical model for the three-point third-order velocity correlation for homogeneous, isotropic turbulence in the inertial range. This model is shown be a good representation of DNS data, and it is used to construct optimal quadratic subgrid models for LES of forced isotropic turbulence with results which agree well with theory and DNS. The model can also be filtered to determine the filtered two-point third-order correlation, which describes energy transfer among filtered (large) scales in LES. LES of wall-bounded flows with unresolved wall layers commonly exhibit good prediction of mean velocities and significant over-prediction of streamwise component energies in the near-wall region. We developed improved models for the nonlinear term in the filtered Navier-Stokes equation which result in better predicted streamwise component energies. These models involve (1) Reynolds decomposition of the nonlinear term and (2) evaluation of the pressure term, which removes the divergent part of the nonlinear models. These considerations significantly improved the performance of our optimal models, and we expect them to apply to other subgrid models as well.
    Department
    Computational Science, Engineering, and Mathematics
    Description
    text
    Subject
    Turbulence simulation
    Large eddy simulation
    Optimal large eddy simulation
    Turbulence modeling
    Subgrid models
    Wall-bounded turbulence
    Channel flow
    Three-point third-order velocity correlation
    Triple velocity correlation
    URI
    http://hdl.handle.net/2152/ETD-UT-2012-05-4988
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin