TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimizing cross-dock operations under uncertainty

    Thumbnail
    View/Open
    SATHASIVAN-DISSERTATION.pdf (960.5Kb)
    Date
    2011-12
    Author
    Sathasivan, Kanthimathi
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Cross-docking is an important transportation logistics strategy in supply chain management which reduces transportation costs, inventory holding costs, order-picking costs and response time. Careful planning is needed for successful cross-dock operations. Uncertainty in cross-dock problems is inevitable and needs to be addressed. Almost all research in the cross-dock area assumes determinism. This dissertation considers uncertainty in cross-dock problems and optimizes these problems under uncertainty. We consider uncertainty in processing times, using scenario-based and protection-based robust approaches. Using a heuristic method, we find a lower and upper bound and combine that with a meta-heuristic method to solve the problem. Also, we consider problems in two different industries (Goodwill and H-E-B) and address the uncertainties that happen frequently in their operations. The scenario-based robust optimization model for the unloading problem using a min max objective is presented with examples. A surrogate heuristic procedure is used to find a robust solution. Next, a two-space genetic algorithm, a meta-heuristic procedure, is applied to the unloading problem using the bounds obtained by the heuristic procedure. The results are closer to the optimal solution than those obtained by the two-space genetic algorithm without bounds. When compared with the regular genetic algorithm with bounds, the two-space algorithm performs well. The protection-based approach considers a limit on the number of coefficients allowed to change with data uncertainty, protecting against the degree of conservatism. The management of trucks and reduction of overtime pay in the cross-dock operations of Goodwill is addressed through two models and uncertainty is applied to those models. A combined cross-dock operations model together with demand is formulated and the uncertainties are discussed for H-E-B operations. This dissertation does not address the recycling operation within the cross-dock of Goodwill, or the uncertainty in H-E-B data.
    Department
    Civil, Architectural, and Environmental Engineering
    Description
    text
    Subject
    Cross-docking
    Uncertainty
    Robust optimization
    URI
    http://hdl.handle.net/2152/ETD-UT-2011-12-4589
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin