Measurement of deformation of rotating blades using digital image correlation

Access full-text files

Date

2011-08

Authors

Lawson, Michael Skylar

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

An experimental study on the application of Digital Image Correlation (DIC) to measure the deformation and strain of rotating blades is described. Commercial DIC software was used to obtain measurements on three different types of rotors with diameter ranging from 18 to 39 and with varying flexibility to explore applicability of the technique over a breadth of scales. The image acquisition was synchronized with the frequency of rotation such that images could be obtained at the same phase and the consistency of measurements was observed. Bending and twist distributions were extracted from the data with deformation as high as 0.4 measured with a theoretical accuracy of 0.0038 and span-wise resolution of 0.066. The technique was demonstrated to have many advantages including full-field high resolution results, non-intrusive measurement, and good accuracy over a range of scales. The span-wise deformation profiles from the DIC technique are used in conjunction with Blade Element Momentum Theory to calculate the thrust and power consumed by the rotor with rigid vi blades; results are comparable to load cell measurements albeit thrust is somewhat under-predicted and power is over-predicted. Overall, the correlation between DIC calculated thrust and BEMT approximations for comparable blades with constant pitch were within 12% through the onset of stall. Measurement of flexible blade deformation that would not have been possible with other techniques demonstrated the utility of the DIC method and helped to confirm predictions of flexible blade behavior.

Description

text

LCSH Subject Headings

Citation