• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The hedgehog pathway in retinal development and disease

    Icon
    View/Open
    BIBLIOWICZ-DISSERTATION.pdf (20.44Mb)
    Date
    2011-08
    Author
    Bibliowicz, Jonathan
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    The Hedgehog receptor Patched (Ptch) is a well-studied tumor suppressor. Mutations in Ptch have been linked to mis-regulation of stem cell proliferation and tumorigenesis in numerous contexts. To study the role of Ptch function during retinal development and homeostasis, I analyzed retinal growth and patterning in the embryonic and post-embryonic (juvenile) zebrafish ptc2 mutant line. ptc2 deficiency in zebrafish results in an expansion of the stem/progenitor population of the ciliary marginal zone (CMZ), as well as ectopic proliferation within the neural retina at juvenile stages. ptc2-/- mutants also possess vitreo-retinal abnormalities that appear to be embryonic in origin. These phenotypes are similar to the ocular abnormalities previously reported in human patients suffering from Basal Cell Naevus Syndrome (BCNS), a disorder that has been linked to mutations in the human PTCH gene (the orthologue of the zebrafish ptc2), and point to the utility of the ptc2 mutant line as a model for the study of BCNS-related ocular pathologies. In addition, peripheral retinal dysplasias that include ectopic neuronal clusters and disrupted lamination were observed at later, juvenile stages. It has been previously proposed that retinal over-proliferation might contribute to retinal dysplasias observed in the post-natal Ptch1 /- mice (an established model for BCNS); however, this potential relationship has yet to be established experimentally. I demonstrated that a population of ectopically proliferating cells give rise to the ectopic neuronal clusters in the INL of ptc2-/- mutants and established ectopic proliferation as the likely cellular underpinning of retinal dysplasia in juvenile ptc2-/- mutants.
    Department
    Cellular and Molecular Biology
    Description
    text
    Subject
    Retina
    Hedgehog
    Disease
    Zebrafish
    Patched
    URI
    http://hdl.handle.net/2152/ETD-UT-2011-08-4184
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin