• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Analysis and control of power converters with instantaneous constant-power loads

    Icon
    View/Open
    ONWUCHEKWA-DISSERTATION.pdf (1.858Mb)
    Date
    2011-08
    Author
    Onwuchekwa, Chimaobi Nwachukwu
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    This dissertation examines the effects of instantaneous constant-power loads (CPLs) on power converters. These CPLs are prevalent in distributed power architectures and are also present in certain motor-drive applications. CPLs introduce a destabilizing nonlinear effect on power converters through an inverse voltage term that leads to significant oscillations in the main bus voltage or to its collapse. Boundary control is studied in order to stabilize dc-dc converters with instantaneous CPLs. The three basic topologies are studied: buck, boost, and buck-boost. Converter dynamics are analyzed in both switching states and the various operating regions of switch interaction with a first-order switching surface are identified. The analysis reveals important characteristics of CPLs. For non-minimum phase converters, in order to avoid issues related with the fact that the closed-loop state-dependent switching function is undefined on the switching surface, reflective mode solutions to both converter systems are defined in the sense of Filippov. Sufficient conditions for large-signal stability of the closed loop converter operating points are established. It is shown that first-order switching surfaces with negative slopes achieve large-signal stability, while positive slopes lead to instability. In particular, for the boost converter it is illustrated via simulations and experiments that positive slopes may lead to another closed-loop limit cycle. It is also shown that instability as well as system-stalling, which is termed the invariant-set problem, may still occur in reflective mode. However, a hysteresis band that contains the designed boundary may be used to prevent system-stalling, and also allow for a practical implementation of the controller by avoiding chattering. Regulation is also achieved. The dynamic behavior of single-phase full-wave uncontrolled rectifiers with instantaneous CPLs is also explored. Stable operation is shown to be dependent on initial condition and circuit parameters, which must fall within reasonable ranges that validate a CPL model. A necessary condition for stable operation of the rectifier system is thus derived. Furthermore, input and output characteristics of the rectifier with a CPL are investigated, and comparisons are made with the resistive case. A more complete model for the rectifier system that incorporates line-voltage distortion is also utilized to study the rectifier system. Simulations and experimental results are included for verification.
    Department
    Electrical and Computer Engineering
    Description
    text
    Subject
    Boundary control
    Constant-power loads
    Distributed power
    Nonlinear system
    URI
    http://hdl.handle.net/2152/ETD-UT-2011-08-4002
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin