TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Computational analysis of meditation

    Thumbnail
    View/Open
    SAGGAR-DISSERTATION.pdf (14.50Mb)
    Date
    2011-08
    Author
    Saggar, Manish
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Meditation training has been shown to improve attention and emotion regulation. However, the mechanisms responsible for these effects are largely unknown. In order to make further progress, a rigorous interdisciplinary approach that combines both empirical and theoretical experiments is required. This dissertation uses such an approach to analyze electroencephalogram (EEG) data collected during two three-month long intensive meditation retreats in four steps. First, novel tools were developed for preprocessing the EEG data. These tools helped remove ocular artifacts, muscular artifacts, and interference from power lines in a semi-automatic fashion. Second, in order to identify the cortical correlates of meditation, longitudinal changes in the cortical activity were measured using spectral analysis. Three main longitudinal changes were observed in the retreat participants: (1) reduced individual alpha frequency after training, similar reduction has been consistently found in experienced meditators; (2) reduced alpha-band power in the midline frontal region, which correlated with improved vigilance performance; and (3) reduced beta-band power in the parietal-occipital regions, which correlated with daily time spent in meditation and enhanced self-reported psychological well-being. Third, a formal computational model was developed to provide a concrete and testable theory about the underlying mechanisms. Four theoretical experiments were run, which showed, (1) reduced intrathalamic gain after training, suggesting enhanced alertness; (2) increased cortico-thalamic delay, which strongly correlated with the reduction in individual alpha frequency (found during spectral analysis); (3) reduction in intrathalamic gain provided increased stability to the brain; and (4) anterior-posterior division in the modeled reticular nucleus of the thalamus (TRN) layer and increased connectivity in the posterior region of TRN after training. Fourth, correlation analysis was performed to ground the changes in cortical activity and model parameters into changes in behavior and self-reported psychological functions. Through these four steps, a concrete theory of the mechanisms underlying focused-attention meditation was constructed. This theory provides both mechanistic and teleological reasoning behind the changes observed during meditation training. The theory further leads to several predictions, including the possibility that customized meditation techniques can be used to treat patients suffering from neurodevelopmental disorders and epilepsy. Lastly, the dissertation attempts to link the theory to the long-held views that meditation improves awareness, attention, stability, and psychological well-being.
    Department
    Computer Sciences
    Description
    text
    Subject
    Computational modeling
    Meditation
    EEG
    Sustained attention
    Spectral analysis
    Preprocessing
    URI
    http://hdl.handle.net/2152/ETD-UT-2011-08-3964
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin