• Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The electrogenerated chemiluminescence of novel organic donor-acceptor emitters as well as study heterogeneous electron transfer kinetics using scanning electrochemical microscopy

    Icon
    View/Open
    SHEN-DISSERTATION.pdf (3.751Mb)
    Date
    2011-08
    Author
    Shen, Mei
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    New modalities and novel emitters were investigated for the production of electrogenerated chemiluminescence (ECL). In annihilation ECL, a light-emitting excited state is formed upon reaction of two electrochemically generated species, typically a radical anion and a radical cation. Donor-acceptor (DA) molecules provide a means of generating these two reactive species within the same molecule but where the oxidized and reduced centers are separated; furthermore, they allow one to explore the ECL properties of multiply charged radical ions. Three new efficient ECL-emitting donor-acceptor molecules were investigated. The effects of conjugation in the electrochemistry of diphenylaminospirobifluorenylfumaronitrile (FPhSPFN), which has the structure of D-X-A-A-X-D, where X is a linker, as well as the effects of the stability of its (multiply charged) radical ions on its red ECL emission (λmax= 708 nm) were studied; the molecule shows solvatochromism and different emission yields on both photoluminescence and ECL in benzene:acetonitrle mixtures. The possibility of generating ECL through multiply charged radical ions was further tested with the very efficient 1b emitter (4,7-bis(4-(4-sec-butoxyphenyl)-5-(3,5-di(1-naphthyl)phenyl)thiophen-2-yl)-2,1,3-benzothiadiazole). Two reversible oxidations and one reduction were observed. The more sluggish reduction is proposed to be a consequence of a long distance electron transfer to the buried acceptor center; further confirmation of this effect was pursued by application of the scanning electrochemical microscope (SECM) to model systems. 1b emits intense ECL with λmax= 635 nm and with an efficiency 330% of the ECL standard 9, 10-diphenylanthracene and similar intensity to the red emitting standard tris(2,2′-bipyridine)ruthenium(II) perchlorate (Rubpy). The generation of asymmetric chronoamperometric ECL pulses upon generation of radical anion-radical dication annihilation events was explained by the use of digital simulation, and proven to be a consequence of asymmetry in the amount of generated charges rather than instability of the electrogenerated species. ECL was also produced from a film of a red fluorophore 1a (4,7-bis(4-(n-hexyl)-5-(3,5-di(1-naphthyl)phenyl)thiophen-2-yl)-2,1,3-benzothiadiazole) with a coreactant in PBS buffer solution. The electrochemical synthesis of carbon quantum Dots (C QDs) in inert atmosphere was explored using highly oriented pyrolytic graphite as the starting material, for its later use in the production of ECL in the radical annihilation mode. FT-IR (ATR), mass spectrometry (desorption chemical ionization), Raman and TEM analysis were used to characterize the C QDs.
    Department
    Chemistry
    Description
    text
    Subject
    ECL
    SECM
    URI
    http://hdl.handle.net/2152/ETD-UT-2011-08-3838
    Collections
    • UT Electronic Theses and Dissertations
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentThis CollectionDate IssuedAuthorsTitlesSubjectsDepartment

    My Account

    Login

    Information

    AboutContactPoliciesGetting StartedGlossaryHelpFAQs

    Statistics

    View Usage Statistics
    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin