Show simple item record

dc.contributor.advisorArmendáriz, Efraim P.en
dc.creatorHannsz, Baron Kurten
dc.date.accessioned2012-02-02T20:07:24Zen
dc.date.available2012-02-02T20:07:24Zen
dc.date.issued2011-08en
dc.date.submittedAugust 2011en
dc.identifier.urihttp://hdl.handle.net/2152/ETD-UT-2011-08-3806en
dc.descriptiontexten
dc.description.abstractThis report examines the theory of continued fractions and how their use enhances the secondary mathematics curriculum. The use of continued fractions to calculate best approximants of real numbers is justified geometrically, and famous irrational numbers are described as continued fractions. Periodic continued fractions and other applications of continued fractions are also discussed.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.subjectContinued fractionsen
dc.subjectIrrationalen
dc.subjectCurriculumen
dc.subjectNumber theoryen
dc.titleContinued fractionsen
dc.date.updated2012-02-02T20:07:34Zen
dc.identifier.slug2152/ETD-UT-2011-08-3806en
dc.contributor.committeeMemberDaniels, Marken
dc.description.departmentMathematicsen
dc.type.genrethesisen
thesis.degree.departmentMathematicsen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorUniversity of Texas at Austinen
thesis.degree.levelMastersen
thesis.degree.nameMaster of Artsen


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record