## Analysis of geometric flows, with applications to optimal homogeneous geometries

##### Abstract

This dissertation considers several problems related to Ricci flow, including the existence and behavior of solutions. The first goal is to obtain explicit, coordinate-based descriptions of Ricci flow solutions--especially those corresponding to Ricci solitons--on two classes of nilpotent Lie groups. On the odd-dimensional classical Heisenberg groups, we determine the asymptotics of Ricci flow starting at any metric, and use Lott's blowdown method to demonstrate convergence to soliton metrics. On the groups of real unitriangular matrices, which are more complicated, we describe the solitons and corresponding solutions using a suitable ansatz. Next, we consider solsolitons involving the nilsolitons in the Heisenberg case above. This uses work of Lauret, which characterizes solsolitons as certain extensions of nilsolitons, and work of Will, which demonstrates that the space of solsolitons extensions of a given nilsoliton is parametrized by the quotient of a Grassmannian by a finite group. We determine these spaces of solsoliton extensions of Heisenberg nilsolitons, and we also explicitly describe many-parameter families of these solsolitons in dimensions greater than three. Finally, we explore Ricci flow coupled with harmonic map flow, both as it arises naturally in certain bundle constructions related to Ricci flow and as a geometric flow in its own right. In the first case, we generalize a theorem of Knopf that demonstrates convergence and stability of certain locally R[superscript N]-invariant Ricci flow solutions. In the second case, we prove a version of Hamilton's compactness theorem for the coupled flow, and then generalize it to the category of etale Riemannian groupoids. We also provide a detailed example of solutions to the flow on the three-dimensional Heisenberg group.

##### Department

##### Description

text