Show simple item record

dc.contributor.advisorCaffarelli, Luis A.en
dc.creatorGuillen, Nestor Danielen
dc.date.accessioned2011-02-10T16:48:06Zen
dc.date.accessioned2011-02-10T16:48:11Zen
dc.date.available2011-02-10T16:48:06Zen
dc.date.available2011-02-10T16:48:11Zen
dc.date.issued2010-12en
dc.date.submittedDecember 2010en
dc.identifier.urihttp://hdl.handle.net/2152/ETD-UT-2010-12-2562en
dc.descriptiontexten
dc.description.abstractWe study the regularity of weak solutions for the Stefan and Hele- Shaw problems with Gibbs-Thomson law under special conditions. The main result says that whenever the free boundary is Lipschitz in space and time it becomes (instantaneously) C[superscript 2,alpha] in space and its mean curvature is Hölder continuous. Additionally, a similar model related to the Signorini problem is introduced, in this case it is shown that for large times weak solutions converge to a stationary configuration.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.subjectNonlinear partial differential equationsen
dc.subjectFree boundary problemsen
dc.subjectLuckhaus theoremen
dc.subjectHele-shawen
dc.subjectStefan problemen
dc.subjectLipschitzen
dc.subjectAlmost minimal surfacesen
dc.titleRegularization in phase transitions with Gibbs-Thomson lawen
dc.date.updated2011-02-10T16:48:11Zen
dc.contributor.committeeMemberGamba, Ireneen
dc.contributor.committeeMemberSouganidis, Panagiotisen
dc.contributor.committeeMemberde La Llave, Rafaelen
dc.contributor.committeeMemberVasseur, Alexisen
dc.contributor.committeeMemberEngquist, Bjornen
dc.description.departmentMathematicsen
dc.type.genrethesisen
thesis.degree.departmentMathematicsen
thesis.degree.disciplineMathematicsen
thesis.degree.grantorUniversity of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen


Files in this item

Icon

This item appears in the following Collection(s)

Show simple item record