Nanosystems for combined therapy and imaging of pancreatic cancer

Access full-text files

Date

2010-12

Authors

Homan, Kimberly Ann

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Pancreatic cancer remains a major unsolved health problem, with conventional cancer treatments having little impact on disease course. The objective of this thesis is to create innovative tools to better understand and improve chemotherapeutic treatment of pancreatic cancer. Towards this end, nanosystems were designed with a dual purpose: to carry chemotherapeutic drugs and act as photoacoustic imaging contrast agents. The overarching hypothesis is that these nanosystems can provide enhanced therapy for pancreatic cancer and enable visualization of drug delivery. Demonstrated in this dissertation is the design, synthesis, and characterization of two such nanosystems built to carry the chemotherapeutic agent gemcitabine while acting as a photoacoustic imaging contrast agent. The nanosystems were also shown to be multifunctional with possible application as photothermal therapy agents and cellular functional sensors. Although future research is required to fully investigate the clinical potential of these systems for pancreatic cancer, the work presented in this dissertation is a step towards creation of multifunctional nanosystems that will enable non-invasive, in vivo photoacoustic imaging of drug delivery.

Description

text

LCSH Subject Headings

Citation