TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Olefin production via reactive distillation based Olefin metathesis

    Thumbnail
    View/Open
    MORRISON-DISSERTATION.pdf (4.348Mb)
    Date
    2010-12
    Author
    Morrison, Ryan Frederick
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Reactive distillation is a combination of a traditional multi-stage distillation column with a chemical reaction. The primary benefits of a reactive distillation process are reduced capital costs for equipment and energy in addition to enhanced conversion for equilibrium-limited reactions. One such equilibrium-limited reaction is an olefin metathesis. Olefin metathesis is a catalyzed reaction that breaks the double bond in olefins and rearranges the alkene fragments into new olefinic products. A comprehensive investigation of a reactive distillation based olefin metathesis and supporting experimentation is documented here. A small pilot plant study was performed for pilot scale performance comparison. Bench reactor experimentation was conducted for the purposes of learning detailed information on specific metathesis reactions. Lastly, a process simulation study was completed for comparison in performance with the small pilot plant process. The small pilot plant study involved the design, construction, testing, operation, and optimization of a reactive distillation column. Continuous operation campaigns at two different hydraulic capacities within the reactive zone were performed and their performances were compared. A higher hydraulic capacity proved to be more efficient and more selective for the conversion of medium molecular weight olefins into both lighter and heavier olefinic products. Bench reactor experiments were designed with the intent of investigating specific alpha olefin metathesis reactions and obtaining conversions, selectivities, and yield structures for future simulation work. However, under conditions similar to that within the small pilot plant process, there existed a high frequency of secondary double bond isomerization (possibly due to an isomerization activity for alumina). There was also an observed dependence on temperature for both the primary metathesis and secondary isomerization reactions. A process simulation representative of the small pilot plant process was constructed in AspenPlus. Using a simplified reaction network based on assumptions and analysis of the reactive zone, its performance was compared with that of the small pilot plant process. The simulation performance tended to underpredict overhead compositions, but accurately simulated the bottoms product composition. Because reactive distillation has not been used with a heavy olefin metathesis reaction, this dissertation demonstrates the uniqueness and effectiveness of a reactive distillation based heavy olefin metathesis.
    Department
    Chemical Engineering
    Description
    text
    Subject
    Olefin metathesis
    Reactive distillation
    URI
    http://hdl.handle.net/2152/ETD-UT-2010-12-2202
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin