Show simple item record

dc.contributor.advisorLee, Jack Chung-Yeungen
dc.creatorZhao, Han, 1982-en
dc.date.accessioned2011-02-07T20:45:48Zen
dc.date.accessioned2011-02-07T20:46:54Zen
dc.date.available2011-02-07T20:45:48Zen
dc.date.available2011-02-07T20:46:54Zen
dc.date.issued2010-12en
dc.date.submittedDecember 2010en
dc.identifier.urihttp://hdl.handle.net/2152/ETD-UT-2010-12-2184en
dc.descriptiontexten
dc.description.abstractThe performance and power scaling of metal-oxide-semiconductor field-effect-transistors (MOSFETs) has been historically achieved through shrinking the gate length of transistors for over three decades. As Si complementary metal-oxide-semiconductor (CMOS) scaling is approaching the physical and optical limits, the emerging technology involves new materials for the gate dielectrics and the channels as well as innovative structures. III-V materials have much higher electron mobility compared to Si, which can potentially provide better device performance. Hence, there have been tremendous research activities to explore the prospects of III-V materials for CMOS applications. Nevertheless, the key challenges for III-V MOSFETs with high-[kappa] oxides such as the lack of high quality, thermodynamically stable insulators that passivate the gate oxide/III-V interface still hinder the development of III-V MOS devices. The main focus of this dissertation is to develop the proper processes and structures for III-V MOS devices that result in good interface quality and high device performance. Firstly, fabrication processes and device structures of surface channel MOSFETs were investigated. The interface quality of In[subscript 0.53]Ga[subscript 0.47]As MOS devices was improved by developing the gate-last process with more than five times lower interface trap density (D[subscript it]) compared to the ones with the gate-first process. Furthermore, the optimum substrate structure was identified for inversion-type In[subscript 0.53]Ga[subscript 0.47]As MOSFETs by investigating the effects of channel doping concentration and thickness on device performance. With the proper process and channel structures, the first inversion-type enhancement-mode In[subscript 0.53]Ga[subscript 0.47]As MOSFETs with equivalent oxide thickness (EOT) of ~10 Å using atomic layer deposited (ALD) HfO₂ gate dielectric were demonstrated. The second part of the study focuses on buried channel InGaAs MOSFETs. Buried channel InGaAs MOSFETs were fabricated to improve the channel mobility using various barriers schemes such as single InP barrier with different thicknesses and InP/InAlAs double-barrier. The impacts of different high-[kappa] dielectrics were also evaluated. It has been found that the key factors enabling mobility improvement at both peak and high-field mobility in In[subscript 0.7]Ga[subscript 0.3]As quantum-well MOSFETs with InP/InAlAs barrier-layers are 1) the epitaxial InP/InAlAs double-barrier confining carriers in the quantum-well channel and 2) good InP/Al₂O₃/HfO₂ interface with small EOT. Record high channel mobility was achieved and subthreshold swing (SS) was greatly improved. Finally, InGaAs tunneling field-effect-transistors (TFETs), which are considered as the next-generation green transistors with ultra-low power consumption, were demonstrated with more than two times higher on-current while maintaining much smaller SS compared to the reported results. The improvements are believed to be due to using the In[subscript 0.7]Ga[subscript 0.3]As tunneling junction with a smaller bandgap and ALD HfO₂ gate dielectric with a smaller EOT.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.subjectIII-Ven
dc.subjectHigh-ken
dc.subjectMOSFETsen
dc.subjectTFETsen
dc.subjectHigh-kappaen
dc.subjectHigh-k gate dielectricsen
dc.subjectHigh-mobility channel materialsen
dc.subjectInGaAsen
dc.titleA study of electrical and material characteristics of III-V MOSFETs and TFETs with high-[kappa] gate dielectricsen
dc.date.updated2011-02-07T20:46:54Zen
dc.contributor.committeeMemberBanerjee, Sanjay K.en
dc.contributor.committeeMemberRegister, Leonard F.en
dc.contributor.committeeMemberTutuc, Emanuelen
dc.contributor.committeeMemberGoel, Nitien
dc.description.departmentElectrical and Computer Engineeringen
dc.type.genrethesisen
thesis.degree.departmentElectrical and Computer Engineeringen
thesis.degree.disciplineElectricalen
thesis.degree.grantorUniversity of Texas at Austinen
thesis.degree.levelDoctoralen
thesis.degree.nameDoctor of Philosophyen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record