TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The inverse medium problem in PML-truncated elastic media

    Thumbnail
    View/Open
    KUCUKCOBAN-DISSERTATION.pdf (29.64Mb)
    Date
    2010-12
    Author
    Kucukcoban, Sezgin
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    We introduce a mathematical framework for the inverse medium problem arising commonly in geotechnical site characterization and geophysical probing applications, when stress waves are used to probe the material composition of the interrogated medium. Specifically, we attempt to recover the spatial distribution of Lame's parameters ( and μ) of an elastic semi-infinite arbitrarily heterogeneous medium, using surface measurements of the medium's response to prescribed dynamic excitations. The focus is on characterizing near-surface deposits, and to this end, we develop a method that is implemented directly in the time-domain, is driven by the full waveform response collected at receivers on the surface, while the domain of interest is truncated using Perfectly-Matched-Layers (PMLs) to limit the originally semi-infinite extent of the physical domain. There are two key issues associated with the problem at hand: (a) the forward problem, namely the numerical simulation of the wave motion in the domain of interest; and (b) the framework and strategies for tackling the inverse problem. To address the forward problem, it is necessary that the domain of interest be truncated, and the resulting finite domain be forced to mimic the physics of the original problem: to this end, we introduce unsplit-field PMLs, and develop and implement two new formulations, one fully-mixed and one hybrid (mixed coupled with a non-mixed approach) that model wave motion within the, now PML-truncated, domain. To address the inverse problem, we adopt a partial-differential-equation-constrained optimization framework that results in the usual triplet of an initial-and-boundary-value forward problem, a final-and-boundary-value adjoint problem, and a time-independent boundary-value control problem. This triplet of boundary-value-problems is used to guide the optimizer to the target profile of the spatially distributed Lame parameters. Given the multiplicity of solutions, we assist the optimizer, by deploying regularization schemes, continuation schemes (regularization factor and source-frequency content), as well as a physics-driven simple procedure to bias the search directions. We report numerical examples attesting to the quality, stability, and efficiency of the forward wave modeling. We also report moderate success with numerical experiments targeting inversion of both smooth and sharp profiles in two dimensions.
    Department
    Civil, Architectural, and Environmental Engineering
    Description
    text
    Subject
    Wave propagation
    PML
    Mixed FEM
    Time-domain elastodynamics
    Full-waveform-based inversion
    Elastic media
    Perfectly matched layers
    URI
    http://hdl.handle.net/2152/ETD-UT-2010-12-2183
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin