TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Performance of comorbidity adjustment measures to predict healthcare utilization and expenditures for patients with diabetes using a large administrative database

    Thumbnail
    View/Open
    CHENG-THESIS.pdf (1.925Mb)
    Date
    2010-12
    Author
    Cheng, Lung-I
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Objective: The objective of this study was to compare the use of different comorbidity measures to predict future healthcare utilization and expenditures for diabetic patients. Methods: This was a retrospective study that included 8,704 diabetic patients enrolled continuously for three years in the Department of Defense TRICARE program. Administrative claims data were used to calculate six comorbidity measures: number of distinct medications, index-year healthcare expenditures, two versions of the Charlson Comorbidity Index (CCI), and two versions of the Chronic Disease Score (CDS). Linear regression models were used to estimate three health outcomes for one- and two-year post-index periods: healthcare expenditures (COST), number of hospitalizations (HOS), and number of emergency department visits (ED). Logistic regression models were used to estimate binary outcomes (above or below the 90th percentile of COST; [greater than or equal to] 1 HOS or none; [greater than or equal to] 1 ED or none). Comparisons were based on adjusted R², areas under the receiver-operator-curve (c statistics), and the Hosmer-Lemeshow goodness-of-fit tests. Results: The study population had a mean age of 51.0 years (SD = 10.5), and 46.3 percent were male. After adjusting for age and sex, the updated CCI was the best predictor of one-year and two-year HOS (adjusted R² = 8.1%, 9.3%), the number of distinct medications was superior in predicting one-year and two-year ED (adjusted R² = 9.9%, 12.4%), and the index-year healthcare expenditures explained the most variance in one-year and two-year COST (adjusted R² = 35.6%, 31.6%). In logistic regressions, the number of distinct medications was the best predictor of one-year and two-year risks of emergency department use (c = 0.653, 0.654), but the index-year healthcare expenditures performed the best in predicting one-year and two-year risks of hospitalizations (c = 0.684, 0.676) and high-expenditure cases (c = 0.810, 0.823). The updated CCI consistently outperformed the original CCI in predicting the outcomes of interest. Conclusions: In a diabetic population under age 65, the number of distinct medications and baseline healthcare expenditures appeared to have superior or similar powers compared to the CCI or CDS for the prediction of future healthcare utilization and expenditures. The updated CCI was a better predictor than the original CCI in this population.
    Department
    Pharmacy
    Description
    text
    Subject
    Diabetes mellitus
    Comorbidity
    Charlson Comorbidity Index
    Chronic Disease Score
    Comorbidity measures
    Diabetics
    Diabetic patients
    Healthcare expenditures
    Healthcare costs
    URI
    http://hdl.handle.net/2152/ETD-UT-2010-12-2143
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin