TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Experimental measurement of energy transport in tokamak plasmas

    Thumbnail
    View/Open
    MEYERSON-THESIS.pdf (1.673Mb)
    Date
    2010-08
    Author
    Meyerson, Dmitry
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    A tokamak plasma near equilibrium can be perturbed with modulated power sources, such as modulated electron cyclotron heating, or repeated cold pulse application. Temperature response to cyclical changes in profiles parameters that are induced by modulated power deposition can be used to test theoretical transport models as well as improve experimental phenomenology used to optimize tokamak performance. The goal of this document to discuss some methods of analyzing electron temperature data in the context of energy transport. Specific experiments are considered in order to demonstrate the methods discussed, as well as to examine the electron energy transport properties of these shots. Electron cyclotron emission provides a convenient way to probe electron temperature for plasmas in thermal equilibrium. We can show that in tokamak devices,barring harmonic overlap, we can associate a particular frequency with a particular location in a tokamak, by carefully selecting the detection frequency and line of sight of the responsible antenna. ECE radiometers typically measure temperature at tens of locations at a time with a spatial resolution on the order of a few centimeters. Tracking the evolution of electron energy flux depends on careful analysis of the resulting data. The most straightforward way to analyze temperature perturbations is to simply consider various harmonics of the driving source and consider the corresponding harmonics in the temperature. We can analyze the phase and amplitude of the response to find the effective phase velocity of the perturbation which can in turn be related to parameters in the selected heat flux model. The most common example is to determine , the diffusion coefficient that appears in the linearized energy transport equation. The advantages and limitation of this method will be discussed in detail in Section 3. A more involved approach involves using the perturbed temperature data to compute modulated heat flux at any given point in the perturbation cycle, rather than using the temperature data directly. As before the heat flux can then be related to measured profile parameters and theoretical predictions. The advantages and limitations of this approach will be discussed in more detail. Both of the mentioned analysis methods are used to probe electron energy transport in a quiescent H mode (QH mode) shot conducted at DIIID. The nature of the internal transport barrier that is present in the shot is considered in light of the results.
    Department
    Physics
    Description
    text
    Subject
    Plasma
    Fusion
    Transport
    ITB
    URI
    http://hdl.handle.net/2152/ETD-UT-2010-08-2181
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin