Reducing top mat reinforcement in bridge decks

Access full-text files

Date

2010-05

Authors

Foster, Stephen Wroe, 1986-

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The Texas Department of Transportation (TxDOT) uses precast, prestressed concrete panels (PCPs) as stay-in-place formwork for most bridges built in Texas. The PCPs are placed on the top flanges of adjacent girders and topped with a 4-in. cast-in-place (CIP) slab. This thesis is directed towards identifying and quantifying the serviceability implications of reducing the deck reinforcement across the interior spans of CIP-PCP decks. The goal of this research is to understand how the PCPs influence cracking and crack control in the CIP slab and to make recommendations to optimize the top mat reinforcement accordingly. Several tests were conducted to evaluate the performance of different top mat reinforcement arrangements for ability to control crack widths across PCP joints. The longitudinal reinforcement was tested using a constant bending moment test, a point load test, and several direct tension tests. Because of difficulty with the CIP-PCP interface during the longitudinal tests, direct tension tests of the CIP slab only were used to compare the transverse reinforcement alternatives. Prior to testing, various top mat design alternatives were evaluated through pre-test calculations for crack widths. Standard reinforcing bars and welded wire reinforcement were considered for the design alternatives. During this study, it was found that the tensile strength of the CIP slab is critical to controlling transverse crack widths. The CIP-PCP interface is difficult to simulate in the laboratory because of inherent eccentricities that result from the test specimen geometry and loading conditions. Furthermore, the constraint and boundary conditions of CIP-PCP bridge decks are difficult to simulate in the laboratory. Based on the results of this testing program, it seems imprudent to reduce the longitudinal reinforcement across the interior spans of CIP-PCP decks. The transverse reinforcement, however, may be reduced using welded wire reinforcement across the interior spans of CIP-PCP decks without compromising longitudinal crack width control. A reduced standard reinforcing bar option may also be considered, but a slight increase in longitudinal crack widths should be expected.

Description

text

LCSH Subject Headings

Citation