TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Count models : with applications to price plans in mobile telecommunication industry

    Thumbnail
    View/Open
    KIM-MASTERS-REPORT.pdf (474.9Kb)
    Date
    2010-05
    Author
    Kim, Yeolib
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    This research assesses the performance of over-dispersed Poisson regression model and negative binomial model with count data. It examines the association between price plan features of mobile phone services and the number of people who adopt the plan. Mobile service data is used to estimate the model with a sample of one million customers running from February 2006 to September 2009. Under three main categories, customer type, age, and handset price, we run the model based on price plan features. Estimates are derived from the maximum likelihood estimation (MLE) method. Root mean squared error (RMSE) is used to observe the statistical fits of all the regression models. Then, we construct four estimation and holdout samples, leaving out one, three, six, and twelve months. The estimation constitutes the in-sample (IS) and the holdout represents the out-sample (OS). By estimating the IS, we predict the OS. Root mean squared error of prediction (RMSEP) is checked to see how accurate the prediction is. Results generally suggest that academic year start (AYS), seasonality, duration of months since launch of price plan (DMLP), basic fees, rate with no discount (RND), free call minutes (FCM), free data (FD), free text messaging (FTM), free perk rating (FPR), and handset support all show significant effect. The significance occurs depending on the segment. The RMSE and RMSEP show that the over-dispersed Poisson model outperforms the negative binomial model. Further implications and limitations of the results are discussed.
    Department
    Mathematics
    Description
    text
    Subject
    Count data
    Mobile telecommunication service
    Poisson model
    Negative binomial model
    URI
    http://hdl.handle.net/2152/ETD-UT-2010-05-1459
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin