TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Progress in the search for ricin A chain and shiga toxin inhibitors

    Thumbnail
    View/Open
    BAI-DISSERTATION.pdf (3.517Mb)
    Date
    2009-12
    Author
    Bai, Yan, 1977-
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Ricin and Shiga toxin type 1 are potent cytotoxins known as ribosome inhibition proteins, abbreviated RIPs. Proteins of this family shut down protein synthesis by removing a critical adenine in the conserved stem-loop structure of 28S rRNA. Due to its exquisite cytotoxicity, the plant toxin ricin has been used as a biological warfare agent. Although great achievement has been made on ricin research, including catalytic mechanism and structure analysis, there is still no specific treatment available for ricin exposure. In addition, ricin A chain inhibitors may also be useful against the homologous bacterial proteins shiga toxins, which are responsible for dysentery, and diseases related to food poisoning, including hemolytic uremic syndrome. Previous study on RTA inhibitor search has provided a number of substrate analog inhibitors, all of which, however, are weaker inhibitors. Therefore, the goal of this work is to improve the binding affinity of known inhibitors and to discovery new scaffolds for inhibitor discovery and development. In this work, multiple approaches were employed for this purpose, including optimizing known inhibitors and searching new inhibitors by Virtual Drug Screening (VDS) and High Throughput Screening (HTS). A number of new RTA inhibitors were discovered by these strategies, which provide a variety of pharmacophores for RTA inhibitor design, and also added a new line of evidence for VDS as an advanced technology for drug discovery and development.
    Department
    Biochemistry
    Description
    text
    Subject
    RIPs
    Ricin A chain
    Shiga toxin
    Inhibitors
    Virtual screening
    High throughput screening
    URI
    http://hdl.handle.net/2152/ETD-UT-2009-12-396
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin