TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    • Repository Home
    • UT Electronic Theses and Dissertations
    • UT Electronic Theses and Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A new approach to modeling drop-pair collisions : predicting the outcome through a fluidic-mechanical system analogy

    Thumbnail
    View/Open
    VAN-NOORDT-THESIS.pdf (3.062Mb)
    Date
    2009-08
    Author
    Van Noordt, Paul Vincent
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    A theoretical study of the approach and collision of liquid-drop pairs is performed with results obtained numerically. The collision process is modeled by a squeeze-flow problem involving both planar and non-planar geometry, with attention given to the deformation of the interacting interfaces. Based on the nature of the collision process, an analogy is made between the fluidic systems of colliding liquid bodies and a mechanical mass- spring-damper system. Examination of the analogous mechanical system yields the derivation of an effective damping ratio, ζ*, which is used to predict the outcome of the drop-drop collisions. Predictions made by utilizing the effective damping ratio are then compared to experimental results presented in literature.
    Department
    Mechanical Engineering
    Description
    text
    Subject
    drops
    drop collisions
    drop coalescence and rebound
    URI
    http://hdl.handle.net/2152/ETD-UT-2009-08-307
    Collections
    • UT Electronic Theses and Dissertations

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin