TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2021 International Solid Freeform Fabrication Symposium
    • View Item
    • Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2021 International Solid Freeform Fabrication Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Variable Extrusion Width for Interlocking Features in Fused Filament Fabrication 3D Printing

    Thumbnail
    View/Open
    2021-126-Habbal.pdf (1.559Mb)
    Date
    2021
    Author
    Habbal, Osama
    Ayoub, Georges
    Pannier, Christopher
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Following from developments in continuously variable extrusion width in fused filament fabrication additive manufacturing, this work explores the combination of in-plane bead width variation with bead trajectory variation as a technique to improve in-plane strength in polymer material extrusion additive manufacturing. Sinusoidal in-plane waveforms are used for the extruder trajectory instead of maintaining a straight line. The varied bead width, in conjunction with the non-straight bead trajectory, reduces anisotropy of strength within the layer. The findings apply to fully dense infill of single layers, commonly called horizontal perimeters in common slicing/toolpath planning computer programs. Experimental tensile testing results show a 48.6% reduction in anisotropy of tensile strength driven by 43% and 29% increases in the ultimate tensile strength in the 0° and 45° orientations, respectively. However, this comes at the cost of 99.6% reduction in toughness in the 90° orientation. We also present the principal concept behind the machine code generating script, that allows for the increase and decrease of the extruded bead width continuously along the extruded bead.
    Department
    Mechanical Engineering
    Subject
    variable extrusion width
    bead ith
    bead trajectory
    in-plane strength
    fused filament fabrication
    additive manufacturing
    URI
    https://hdl.handle.net/2152/90745
    http://dx.doi.org/10.26153/tsw/17664
    Collections
    • 2021 International Solid Freeform Fabrication Symposium

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin