Feasibility Study of Large-Format, Freeform 3D Printing for On-Orbit Additive Manufacturing
Abstract
Large scale, on-orbit additive manufacturing (AM) and assembly is being considered as a
modular and resource saving approach to facilitate permanent human presence in space. To realise
this, a novel AM approach to freeform fabricate large, functional structures in space has been
developed. Combining the reach of a free-flying CubeSat with a collaborative robotic arm and a 3D
printer, large support-free thermoplastic structures can be manufactured beyond the size of the setup
itself. The feasibility of the proposed fabrication approach was established using the Experimental
Lab for Proximity Operations and Space Situational Awareness (ELISSA) system, where a modified
fused filament fabrication setup was mounted on a free-flyer to 3D print free-standing structures.
Using a continuous navigation path incorporating an infinite fabrication loop, over 70 centimetre
long, support-free trusses were produced to well demonstrate the potential of the proposed method
in boundless direct printing of complex structures, independent of gravity or printing orientation.