TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2019 International Solid Freeform Fabrication Symposium
    • View Item
    • Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2019 International Solid Freeform Fabrication Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    In-Plane Pure Shear Deformation of Cellular Materials with Novel Grip Design

    Thumbnail
    View/Open
    2019-192-Conway.pdf (3.542Mb)
    Date
    2019
    Author
    Conway, K.M.
    Kulkarni, S.S.
    Smith, B.A.
    Pataky, G.J.
    Mocko, G.M.
    Summers, J.D.
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Cellular materials are popular due to their high specific strength, but their in-plane shear behavior is not well understood. Current experimental methods are limited due to the lack of pure shear loading as common arcan-style grips have not been adjusted for cellular materials. A significant concern is a mixture of shear loading with grip induced tension. While in bulk materials the tensile force can be assumed negligible, it has a significant impact on the deformation behavior of cellular materials. In this study, finite element modeling simulations were used to demonstrate that using a new sliding grip design reduced grip induced tension on cellular materials. Experimental studies were performed on honeycomb cellular materials with traditional and newlydeveloped grips to calculate and compare the shear strength and ductility of honeycomb cellular materials. The study concluded that traditional grips overestimate the shear strength of honeycomb cellular materials and honeycomb cellular materials in pure shear with limited grip induced tension has significantly lower strength and ductility due to the early formation of plastic hinges.
    Department
    Mechanical Engineering
    Subject
    shear strength
    shear deformation
    grips
    cellular materials
    in-plane
    URI
    https://hdl.handle.net/2152/90562
    http://dx.doi.org/10.26153/tsw/17481
    Collections
    • 2019 International Solid Freeform Fabrication Symposium

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin