TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2018 International Solid Freeform Fabrication Symposium
    • View Item
    • Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2018 International Solid Freeform Fabrication Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Theory and Methodology for High-Performance Material-Extrusion Additive Manufacturing Under the Guidance of Force-Flow

    Thumbnail
    View/Open
    2018-167-Wang.pdf (2.215Mb)
    Date
    2018
    Author
    Wang, Yu
    Chen, Ziqian
    Li, Houqi
    Li, Shuaishuai
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Anisotropy on strength between different layers and filaments in the material extrusion (MEX) process has a significant influence on mechanical performances of fabricated objects. A novel theory and methodology is proposed to improve mechanical performances of parts by designing and controlling the anisotropy. Anisotropy can then be in alignment with load paths under the guidance of force-flow. In this study, by (1) dividing the part into several building areas and generating corresponding building direction considering the force-flow properties of the part; (2) generating novel toolpaths which are based on principal stress lines (PSL) and will map the direction and magnitude of PSL, the adverse influence of anisotropy on mechanical performances between different layers and filaments can be minimized respectively. A 6-axis robot arm integrated with an extrusion system is constructed to handle the multi-direction building of each building area. The study will advance the development of additive manufacturing from "prototype" to "end-use".
    Department
    Mechanical Engineering
    Subject
    additive manufacturing
    material extrusion
    mechanical performance
    anisotropy
    force-flow
    URI
    https://hdl.handle.net/2152/90281
    http://dx.doi.org/10.26153/tsw/17202
    Collections
    • 2018 International Solid Freeform Fabrication Symposium

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin