Integrating Interactive Design and Simulation for Mass Customized 3D-Printed Objects - A Cup Holder Example
Abstract
We present an approach for integrating interactive design and simulation for customizing
parameterized 3D models. Instead of manipulating the mesh directly, a simplified interface for
casual users allows for adapting intuitive parameters, such as handle diameter or height of our example object – a cup holder. The transition between modeling and simulation is performed with
a volumetric subdivision representation, allowing direct adaption of the simulation mesh without
re-meshing. Our GPU-based FEM solver calculates deformation and stresses for the current parameter configuration within seconds with a pre-defined load case. If the physical constraints are
met, our system allows the user to 3D print the object. Otherwise, it provides guidance which parameters to change to optimize stability while adding as little material as possible based on a finite
differences optimization approach. The speed of our GPU-solver and the fluent transition between
design and simulation renders the system interactive, requiring no pre-computation.