TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2015 International Solid Freeform Fabrication Symposium
    • View Item
    • Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2015 International Solid Freeform Fabrication Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Embedding of SMD Populated Circuits into FDM Printed Objects

    Thumbnail
    View/Open
    2015-14-Wasserfall.pdf (8.459Mb)
    Date
    2015
    Author
    Wasserfall, Florens
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    This paper introduces the concept of a highly integrated 3D-printing device which is capable of printing plastic parts with integrated, fully assembled electronic circuits in a single process. It is based on a standard FDM 3D-printer that has been augmented by a screw-driven conductive paste extruder for electronic circuit printing, a vacuum nozzle to pick and place SMD-components and a vision system to find and precisely align the components before placing. To control the printer, an existing host software system has been extended to synchronize the communication with the printer for interactive operations and to generate the required movements from camera data by means of image processing. A number of objects, containing circuits on both the surface and inside of the object, has been successfully printed already. Quality and durability of the generated parts have been evaluated by analyzing the curing characteristics of the conductive ink during the process and the adhesion of the components which are placed directly on the wet ink. The design concept aims for a practical, affordable approach that can be widely used by developers to lower the entrance barrier to the field of 3D-printed electronics. Hence, the hardware is kept as simple as possible, avoiding complex and expensive components as laser or CNC-milling devices, focusing on algorithmic improvements in the preprocessing and control software. All developed hard- and software-components are available under open source licenses and compatible to common existing projects.
    Department
    Mechanical Engineering
    Subject
    3D printing
    fused deposition modeling
    electronic circuits
    SMD-components
    URI
    https://hdl.handle.net/2152/89317
    Collections
    • 2015 International Solid Freeform Fabrication Symposium

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin