TexasScholarWorks
    • Login
    • Submit
    View Item 
    •   Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2014 International Solid Freeform Fabrication Symposium
    • View Item
    • Repository Home
    • Conference Proceedings and Journals
    • International Solid Freeform Fabrication Symposium
    • 2014 International Solid Freeform Fabrication Symposium
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Separation Force Analysis Based on Cohesive Delamination Model for Bottom-Up Stereolithography Using Finite Element Analysis

    Thumbnail
    View/Open
    2014-113-Liravi.pdf (2.009Mb)
    Date
    2014
    Author
    Liravi, Farzad
    Das, Sonjoy
    Zhou, Chi
    Share
     Facebook
     Twitter
     LinkedIn
    Metadata
    Show full item record
    Abstract
    Bottom-up (constrain-surface) Additive Manufacturing (AM) systems have been widely used in industry. Compared to traditional open-surface AM technology, properties like better vertical resolution, higher material filling rate, less production time, and less material waste make bottom-up AM technology a suitable candidate for fabrication of complex three dimensional materials with high accuracy. However during the pulling up stage, the substantial force generated between the formed part and the material container has high risk of breaking the part and therefore reduces the process reliability. In this paper, an optimization-based method is developed to model bottom-up AM process using finite element analysis (FEA). The FEA model is developed using ABAQUS to model the behavior of the cohesive delamination at the interface of the formed part and a hyper-elastic intermediate which has been used to reduce the pulling up force. An optimization model is also established to evaluate the cohesive stiffness parameters that cannot be calculated directly from closed formulas or mechanical tests. The results of this work will be used to develop an adaptive closed-loop mechanics-based system to control the pulling up process and achieve a reliable technology.
    Department
    Mechanical Engineering
    Subject
    bottom-up stereolithography
    bottom-up additive manufacturing
    finite element analysis
    separation force
    cohesive delamination
    optimization
    URI
    https://hdl.handle.net/2152/89302
    Collections
    • 2014 International Solid Freeform Fabrication Symposium

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin

     

     

    Browse

    Entire RepositoryCommunities & CollectionsDate IssuedAuthorsTitlesSubjectsDepartmentsThis CollectionDate IssuedAuthorsTitlesSubjectsDepartments

    My Account

    Login

    Statistics

    View Usage Statistics

    Information

    About Contact Policies Getting Started Glossary Help FAQs

    University of Texas at Austin Libraries
    • facebook
    • twitter
    • instagram
    • youtube
    • CONTACT US
    • MAPS & DIRECTIONS
    • JOB OPPORTUNITIES
    • UT Austin Home
    • Emergency Information
    • Site Policies
    • Web Accessibility Policy
    • Web Privacy Policy
    • Adobe Reader
    Subscribe to our NewsletterGive to the Libraries

    © The University of Texas at Austin