Instrumentation and live load testing of I-girder bridges for cross-frame fatigue analysis

Date

2019-05-08

Authors

Zecchin, Esteban

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The work outlined in this thesis is part of a larger study on the behavior of cross-frames in steel bridge systems. The study is funded by the National Cooperative Highway Research Program (NCHRP 12-113). The fundamental goals of the research investigation are to produce methodologies and design guidelines for the following: • evaluation of fatigue design stresses in cross-frames in straight and horizontally curved steel I-girder bridges; • calculation of minimum cross-frame strength and stiffness requirements for stability bracing of I-girders during construction and in-service; • development of improved methods to account for the influence of end connection details on cross-frame stiffness that extend beyond and improve upon the suggested guidance currently provided in Article C4.6.3.3.4 of the AASHTO LRFD Bridge Design Specifications. This work includes field monitoring and parametric FEA studies. The field studies are focused on three bridges: 1) a straight bridge with normal supports, 2) a straight bridge with skewed supports, and 3) a horizontally curved bridge. The field studies include rainflow monitoring of fatigue induced stresses in select cross-frames and the girders for a period of approximately 4 weeks as well as live load tests using trucks of known weights. This thesis focuses on the instrumentation and live load tests performed in the three bridges. In addition to the field data, an assessment of the most widely used commercial design software for steel bridges was carried out. The software was selected based upon a survey of several bridge owners and designers.

Description

LCSH Subject Headings

Citation